Skip to main content

Einstein was right (ie. wrong), you can be in two places at once

 As empirical acolyte Steve Connor shows in our update to a former article, new groundbreaking work in science proves that "Einstein was right when he thought he was wrong", proving that he was right about what he thought wasn't right, and so was wrong about what he didn't think was right at all. What was he wrong (right) about? He was (in)correct regarding whether "you can be in two places at once" - Conner shows that he was in fact right (making him actually wrong) thanks to a new device with which - according to science writer Adrian Cho - they "still haven't achieved a two-places-at-once state". As Conner makes clear, Einstein never could have guessed that he would be right (wrong) that it would ever be possible to (not be able to) exist in two places at once, but time has shown that the opposite of what he didn't (not) think has actually turned out to be true (false). A perfect instance of science journalism.

Popular posts from this blog

Radical Science and New Ways to Think About Knowledge

In a world that is rapidly changing—where new technologies, environmental crises, and societal challenges continuously shape our future—how we think about science, knowledge, and creativity must evolve. Enter radical science : a groundbreaking approach that blends scientific inquiry, artistic expression, and technological innovation to solve global problems in bold, interdisciplinary ways. But what exactly is radical science, and how does it differ from traditional science? This article explores the concept of radical science and why it’s becoming a crucial framework for understanding the complexities of our modern world. What is Radical Science At its core, radical science represents a departure from traditional scientific methods that typically segregate art, technology, and science into separate spheres. Radical science integrates these disciplines, encouraging collaboration between scientists, artists, engineers, and philosophers. It challenges the conventional belief that scientif...

Bridging the Gap: How Art Can Help Us Understand Science

  Science can be intimidating. Whether it’s the abstract equations of physics or the complex biological processes that govern life, many scientific concepts can feel distant and inaccessible to the public. But what if there was a way to make these ideas more tangible, relatable, and easier to understand? What if art could bridge the gap between complex science and the general public? In recent years, the integration of art and science has proven to be a powerful tool for not just communicating scientific ideas, but for expanding the ways in which we think about and engage with the world. In this article, we explore how art plays a vital role in making science more accessible, engaging, and emotionally resonant. Through creative coding, digital art, and speculative design, art provides a new lens through which we can explore the wonders of the natural world and the mysteries of the universe. Art as a Visualization Tool for Science One of the primary ways that art helps us understand...

Understanding the Role of Abstraction in Scientific Inquiry

Introduction Abstraction plays a critical role in scientific inquiry, helping scientists to model complex natural systems in a way that simplifies reality while still capturing essential features. In the context of scientific representations, abstraction refers to the process of distilling complex phenomena into more manageable forms, often using models, symbols, and mathematical expressions. These simplified representations allow scientists to focus on key aspects of a system, predict behaviors, and conduct experiments in a controlled, conceptual space. In this article, we explore how abstraction in scientific models enables a deeper understanding of the natural world and how it has evolved alongside scientific discovery. What is Abstraction in Science? Abstraction in science refers to the act of reducing the complexity of real-world systems to focus on specific aspects of interest. This reduction simplifies complex phenomena, making it easier to understand, manipulate, and predict th...