Skip to main content

The Synthetic A Priori: Making Euclidean Geometry Subjective and Almost Dead

 

From the Renaissance to the Enlightenment, Europeans are all about the geometric approach.  The approach from Euclid.  When Galileo says that the universe speaks in mathematics, he's thinking about geometry.  When Newton writes the Principia, he does so following a geometric method.  His fluxions, or calculus, would allow otherwise, but somehow it still seems proper to construct the concepts geometrically.

Of course this is not really Euclid, but the European reimagining of Euclid.  And as algebras advance, so do new geometries.  Fast forward to the end of the 18th century.  Kant talks what we can know and what we can't.  A priori knowledge is innate, what we know before experience, what he also calls analytic.  Synthetic knowledge on the other hand comes from experience, what he calls a posteriori.  But mathematics and geometry are something different.  He calls them the synthetic a priori.

Like a priori knowledge, math is constructed in the mind, like synthetic knowledge it effectively describes the experienced world.  This is no longer Galileo's geometrical accuracy in describing the universe, geometry is now a mental model that in turn permits an accurate description of the world.  

Decades later, Gauss and Lobachevsky would make the first key steps towards questioning Euclid's parallel postulate and remaking geometry in a Non-Euclidean mold.  Kant is at a crossroads - a last gasp for the Euclidean approach in Europe.  Hume's skeptical empiricism leads him to doubt rational truths, yet the Euclidean system still epitomizes what is most rigorously true.  So if it's not a Platonic fact, it's a psychological one.

This relativism allows one to ask again - what then is the structure of the real world?  Perhaps there are other realist models - perhaps we can question again the basic axioms of Euclid.  And so it began, starting from Kant, who creates one of the most cohesive defenses of Euclid's method, and also gives space to its strongest alternatives.

Popular posts from this blog

Radical Science and New Ways to Think About Knowledge

In a world that is rapidly changing—where new technologies, environmental crises, and societal challenges continuously shape our future—how we think about science, knowledge, and creativity must evolve. Enter radical science : a groundbreaking approach that blends scientific inquiry, artistic expression, and technological innovation to solve global problems in bold, interdisciplinary ways. But what exactly is radical science, and how does it differ from traditional science? This article explores the concept of radical science and why it’s becoming a crucial framework for understanding the complexities of our modern world. What is Radical Science At its core, radical science represents a departure from traditional scientific methods that typically segregate art, technology, and science into separate spheres. Radical science integrates these disciplines, encouraging collaboration between scientists, artists, engineers, and philosophers. It challenges the conventional belief that scientif...

Pascal and Laplace: Probabilities of the Divine and Divine Probabilities

  Pascal's Wager is the opportunity for a mathematician turned theologian to justify their view of cosmic order in the mathematical ways they've come to know.  What's the pay off if you're right and what's the pay off if you're wrong.  If the pay off for being right far outweighs that for being wrong, should we out of principle take the wager? Ask Laplace and we have a different framing.  Now probability has replaced the divine role so the aspect of choice has been eliminated.  Probability no longer informs a bet on divine order, divine order is a subsidiary part of probability.  Laplace's famous demon is not an impossible gambit on an all-controlling deity as popularly assumed, but a thesis that cosmic order can be predicated by sheer mathematical analysis.  Pascal's world still contains Christian state law, but Laplace's does not.  How do we culturally bind people without such moral institutions? It turns out fairly easily.  We don't need t...

Bridging the Gap: How Art Can Help Us Understand Science

  Science can be intimidating. Whether it’s the abstract equations of physics or the complex biological processes that govern life, many scientific concepts can feel distant and inaccessible to the public. But what if there was a way to make these ideas more tangible, relatable, and easier to understand? What if art could bridge the gap between complex science and the general public? In recent years, the integration of art and science has proven to be a powerful tool for not just communicating scientific ideas, but for expanding the ways in which we think about and engage with the world. In this article, we explore how art plays a vital role in making science more accessible, engaging, and emotionally resonant. Through creative coding, digital art, and speculative design, art provides a new lens through which we can explore the wonders of the natural world and the mysteries of the universe. Art as a Visualization Tool for Science One of the primary ways that art helps us understand...